Parallel Reduction

- Common and important data parallel primitive
- Easy to implement in CUDA
 - Harder to get it right
- Serves as a great optimization example
 - We’ll walk step by step through 7 different versions
 - Demonstrates several important optimization strategies
Parallel Reduction

- Tree-based approach used within each thread block

Need to be able to use multiple thread blocks
- To process very large arrays
- To keep all multiprocessors on the GPU busy
- Each thread block reduces a portion of the array

But how do we communicate partial results between thread blocks?
Problem: Global Synchronization

If we could synchronize across all thread blocks, could easily reduce very large arrays, right?
- Global sync after each block produces its result
- Once all blocks reach sync, continue recursively

But CUDA has no global synchronization. Why?
- Expensive to build in hardware for GPUs with high processor count
- Would force programmer to run fewer blocks (no more than \# multiprocessors * \# resident blocks / multiprocessor) to avoid deadlock, which may reduce overall efficiency

Solution: decompose into multiple kernels
- Kernel launch serves as a global synchronization point
- Kernel launch has negligible HW overhead, low SW overhead
Solution: Kernel Decomposition

Avoid global sync by decomposing computation into multiple kernel invocations

In the case of reductions, code for all levels is the same

Recursive kernel invocation
What is Our Optimization Goal?

We should strive to reach GPU peak performance.

Choose the right metric:
- GFLOP/s: for compute-bound kernels
- Bandwidth: for memory-bound kernels

Reducions have very low arithmetic intensity:
- 1 flop per element loaded (bandwidth-optimal)

Therefore we should strive for peak bandwidth.

Will use G80 GPU for this example:
- 384-bit memory interface, 900 MHz DDR
- \[384 \times 1800 / 8 = 86.4 \text{ GB/s} \]
__global__ void reduce0(int *g_idata, int *g_odata) {
 extern __shared__ int sdata[];

 // each thread loads one element from global to shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 sdata[tid] = g_idata[i];
 __syncthreads();

 // do reduction in shared mem
 for(unsigned int s=1; s < blockDim.x; s *= 2) {
 if (tid % (2*s) == 0) {
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }

 // write result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
Parallel Reduction: Interleaved Addressing

Values (shared memory)

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Stride 1</th>
<th>Thread IDs</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 2 4 6 8 10 12 14</td>
<td>10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Stride 2</th>
<th>Thread IDs</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 4 8 12</td>
<td>11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Stride 4</th>
<th>Thread IDs</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 8</td>
<td>18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Stride 8</th>
<th>Thread IDs</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2</td>
</tr>
</tbody>
</table>

| | | | 41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2 |
Reduction #1: Interleaved Addressing

```c
__global__ void reduce1(int *g_idata, int *g_odata) {
    extern __shared__ int sdata[];

    // each thread loads one element from global to shared mem
    unsigned int tid = threadIdx.x;
    unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
    sdata[tid] = g_idata[i];
    __syncthreads();

    // do reduction in shared mem
    for (unsigned int s=1; s < blockDim.x; s *= 2) {
        if (tid % (2*s) == 0) {
            sdata[tid] += sdata[tid + s];
        }
        __syncthreads();
    }

    // write result for this block to global mem
    if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
```

Problem: highly divergent warps are very inefficient, and % operator is very slow
Performance for 4M element reduction

<table>
<thead>
<tr>
<th>Kernel 1:</th>
<th>Time (2^{22} ints)</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
</tr>
</tbody>
</table>

interleaved addressing with divergent branching

Note: Block Size = 128 threads for all tests
Reduction #2: Interleaved Addressing

Just replace divergent branch in inner loop:

```c
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    if (tid % (2*s) == 0) {
        sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
}
```

With strided index and non-divergent branch:

```c
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    int index = 2 * s * tid;
    if (index < blockDim.x) {
        sdata[index] += sdata[index + s];
    }
    __syncthreads();
}
```
Parallel Reduction: Interleaved Addressing

Values (shared memory)

| Values | 10 | 1 | 8 | -1 | 0 | -2 | 3 | 5 | -2 | -3 | 2 | 7 | 0 | 11 | 0 | 2 |

Step 1
Stride 1

| Thread IDs | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Values | 11 | 1 | 7 | -1 | -2 | -2 | 8 | 5 | -5 | -3 | 9 | 7 | 11 | 11 | 2 | 2 |

Step 2
Stride 2

| Thread IDs | 0 | 1 | 2 | 3 |
| Values | 18 | 1 | 7 | -1 | 6 | -2 | 8 | 5 | 4 | -3 | 9 | 7 | 13 | 11 | 2 | 2 |

Step 3
Stride 4

| Thread IDs | 0 | 1 |
| Values | 24 | 1 | 7 | -1 | 6 | -2 | 8 | 5 | 17 | -3 | 9 | 7 | 13 | 11 | 2 | 2 |

Step 4
Stride 8

| Thread IDs | 0 |
| Values | 41 | 1 | 7 | -1 | 6 | -2 | 8 | 5 | 17 | -3 | 9 | 7 | 13 | 11 | 2 | 2 |

New Problem: Shared Memory Bank Conflicts
Performance for 4M element reduction

<table>
<thead>
<tr>
<th>Kernel 1:</th>
<th>Time (2^{22} ints)</th>
<th>Bandwidth</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>interleaved addressing</td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with divergent branching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kernel 2:</th>
<th>Time (2^{22} ints)</th>
<th>Bandwidth</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>interleaved addressing</td>
<td>3.456 ms</td>
<td>4.854 GB/s</td>
<td>2.33x</td>
<td>2.33x</td>
</tr>
<tr>
<td>with bank conflicts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parallel Reduction: Sequential Addressing

Values (shared memory)

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>1</th>
<th>8</th>
<th>-1</th>
<th>0</th>
<th>-2</th>
<th>3</th>
<th>5</th>
<th>-2</th>
<th>-3</th>
<th>2</th>
<th>7</th>
<th>0</th>
<th>11</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
</table>

Step 1
Stride 8

Thread IDs

0 1 2 3 4 5 6 7

Step 2
Stride 4

Thread IDs

0 1 2 3

Values

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>-2</th>
<th>10</th>
<th>6</th>
<th>0</th>
<th>9</th>
<th>3</th>
<th>7</th>
<th>-2</th>
<th>-3</th>
<th>2</th>
<th>7</th>
<th>0</th>
<th>11</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
</table>

Step 3
Stride 2

Thread IDs

0 1

Values

<table>
<thead>
<tr>
<th></th>
<th>21</th>
<th>20</th>
<th>13</th>
<th>13</th>
<th>0</th>
<th>9</th>
<th>3</th>
<th>7</th>
<th>-2</th>
<th>-3</th>
<th>2</th>
<th>7</th>
<th>0</th>
<th>11</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
</table>

Step 4
Stride 1

Thread IDs

0

Values

<table>
<thead>
<tr>
<th></th>
<th>41</th>
<th>20</th>
<th>13</th>
<th>13</th>
<th>0</th>
<th>9</th>
<th>3</th>
<th>7</th>
<th>-2</th>
<th>-3</th>
<th>2</th>
<th>7</th>
<th>0</th>
<th>11</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
</table>

Sequential addressing is conflict free
Reduction #3: Sequential Addressing

Just replace strided indexing in inner loop:

```c
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    int index = 2 * s * tid;

    if (index < blockDim.x) {
        sdata[index] += sdata[index + s];
    }
    __syncthreads();
}
```

With reversed loop and threadID-based indexing:

```c
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
    if (tid < s) {
        sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
}
```
Performance for 4M element reduction

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Time (2(^{22}) ints)</th>
<th>Bandwidth</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel 1:</td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interleaved addressing with divergent branching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 2:</td>
<td>3.456 ms</td>
<td>4.854 GB/s</td>
<td>2.33x</td>
<td>2.33x</td>
</tr>
<tr>
<td>interleaved addressing with bank conflicts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 3:</td>
<td>1.722 ms</td>
<td>9.741 GB/s</td>
<td>2.01x</td>
<td>4.68x</td>
</tr>
<tr>
<td>sequential addressing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Idle Threads

Problem:

```c
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
    if (tid < s) {
        sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
}
```

Half of the threads are idle on first loop iteration!

This is wasteful…
Reduction #4: First Add During Load

Halve the number of blocks, and replace single load:

```c
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
__syncthreads();
```

With two loads and first add of the reduction:

```c
// perform first level of reduction,
// reading from global memory, writing to shared memory
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
```
Performance for 4M element reduction

<table>
<thead>
<tr>
<th>Kernel 1:</th>
<th>Time (2^{22} ints)</th>
<th>Bandwidth</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>interleaved addressing</td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
<td>2.33x</td>
<td>2.33x</td>
</tr>
<tr>
<td>with divergent branching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 2:</td>
<td>3.456 ms</td>
<td>4.854 GB/s</td>
<td>2.33x</td>
<td>2.33x</td>
</tr>
<tr>
<td>interleaved addressing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with bank conflicts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 3:</td>
<td>1.722 ms</td>
<td>9.741 GB/s</td>
<td>2.01x</td>
<td>4.68x</td>
</tr>
<tr>
<td>sequential addressing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 4:</td>
<td>0.965 ms</td>
<td>17.377 GB/s</td>
<td>1.78x</td>
<td>8.34x</td>
</tr>
<tr>
<td>first add during global load</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Instruction Bottleneck

At 17 GB/s, we’re far from bandwidth bound
 And we know reduction has low arithmetic intensity

Therefore a likely bottleneck is instruction overhead
 Ancillary instructions that are not loads, stores, or arithmetic for the core computation
 In other words: address arithmetic and loop overhead

Strategy: unroll loops
Unrolling the Last Warp

As reduction proceeds, # “active” threads decreases
 When s <= 32, we have only one warp left
Instructions are SIMD synchronous within a warp
That means when s <= 32:
 We don’t need to __syncthreads()
 We don’t need “if (tid < s)” because it doesn’t save any work

Let’s unroll the last 6 iterations of the inner loop
Reduction #5: Unroll the Last Warp

```c
__device__ void warpReduce(volatile int* sdata, int tid) {
    sdata[tid] += sdata[tid + 32];
    sdata[tid] += sdata[tid + 16];
    sdata[tid] += sdata[tid +  8];
    sdata[tid] += sdata[tid +  4];
    sdata[tid] += sdata[tid +  2];
    sdata[tid] += sdata[tid +  1];
}
```

IMPORTANT:
For this to be correct, we must use the “volatile” keyword!

```c
// later…
for (unsigned int s=blockDim.x/2; s>32; s>>=1) {
    if (tid < s)
        sdata[tid] += sdata[tid + s];
    __syncthreads();
}
```

```c
if (tid < 32) warpReduce(sdata, tid);
```

Note: This saves useless work in all warps, not just the last one!
Without unrolling, all warps execute every iteration of the for loop and if statement
Performance for 4M element reduction

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Addressing</th>
<th>Time (2(^{22}) ints)</th>
<th>Bandwidth</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel 1:</td>
<td>interleaved addressing with divergent branching</td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 2:</td>
<td>interleaved addressing with bank conflicts</td>
<td>3.456 ms</td>
<td>4.854 GB/s</td>
<td>2.33x</td>
<td>2.33x</td>
</tr>
<tr>
<td>Kernel 3:</td>
<td>sequential addressing</td>
<td>1.722 ms</td>
<td>9.741 GB/s</td>
<td>2.01x</td>
<td>4.68x</td>
</tr>
<tr>
<td>Kernel 4:</td>
<td>first add during global load</td>
<td>0.965 ms</td>
<td>17.377 GB/s</td>
<td>1.78x</td>
<td>8.34x</td>
</tr>
<tr>
<td>Kernel 5:</td>
<td>unroll last warp</td>
<td>0.536 ms</td>
<td>31.289 GB/s</td>
<td>1.8x</td>
<td>15.01x</td>
</tr>
</tbody>
</table>
Complete Unrolling

If we knew the number of iterations at compile time, we could completely unroll the reduction

- Luckily, the block size is limited by the GPU to 512 threads
- Also, we are sticking to power-of-2 block sizes

So we can easily unroll for a fixed block size

- But we need to be generic – how can we unroll for block sizes that we don’t know at compile time?

Templates to the rescue!

- CUDA supports C++ template parameters on device and host functions
Unrolling with Templates

Specify block size as a function template parameter:

```cpp
template <unsigned int blockSize>
__global__ void reduce5(int *g_idata, int *g_odata)
```
Reduction #6: Completely Unrolled

Template <unsigned int blockSize>
__device__ void warpReduce(volatile int* sdata, int tid) {
 if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
 if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
 if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
 if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
 if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
 if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}

if (blockSize >= 512) {
 if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }
if (blockSize >= 256) {
 if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }
if (blockSize >= 128) {
 if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); }
if (tid < 32) warpReduce<blockSize>(sdata, tid);

Note: all code in RED will be evaluated at compile time.
Results in a very efficient inner loop!
Invoking Template Kernels

Don’t we still need block size at compile time?

Nope, just a switch statement for 10 possible block sizes:

```cpp
switch (threads) {
    case 512: reduce5<512><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case 256: reduce5<256><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case 128: reduce5<128><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case  64: reduce5<  64><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case  32: reduce5<  32><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case  16: reduce5<  16><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case   8: reduce5<   8><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case   4: reduce5<   4><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case   2: reduce5<   2><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case   1: reduce5<   1><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
}
```
Performance for 4M element reduction

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Description</th>
<th>Time (2^{22} ints)</th>
<th>Bandwidth</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel 1:</td>
<td>interleaved addressing with divergent branching</td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 2:</td>
<td>interleaved addressing with bank conflicts</td>
<td>3.456 ms</td>
<td>4.854 GB/s</td>
<td>2.33x</td>
<td>2.33x</td>
</tr>
<tr>
<td>Kernel 3:</td>
<td>sequential addressing</td>
<td>1.722 ms</td>
<td>9.741 GB/s</td>
<td>2.01x</td>
<td>4.68x</td>
</tr>
<tr>
<td>Kernel 4:</td>
<td>first add during global load</td>
<td>0.965 ms</td>
<td>17.377 GB/s</td>
<td>1.78x</td>
<td>8.34x</td>
</tr>
<tr>
<td>Kernel 5:</td>
<td>unroll last warp</td>
<td>0.536 ms</td>
<td>31.289 GB/s</td>
<td>1.8x</td>
<td>15.01x</td>
</tr>
<tr>
<td>Kernel 6:</td>
<td>completely unrolled</td>
<td>0.381 ms</td>
<td>43.996 GB/s</td>
<td>1.41x</td>
<td>21.16x</td>
</tr>
</tbody>
</table>
Parallel Reduction Complexity

- Log(N) parallel steps, each step S does \(N/2^S \) independent ops
 - Step Complexity is \(O(\log N) \)

- For \(N=2^D \), performs \(\sum_{S \in [1..D]} 2^{D-S} = N-1 \) operations
 - Work Complexity is \(O(N) \) – It is work-efficient
 - i.e. does not perform more operations than a sequential algorithm

- With \(P \) threads physically in parallel (\(P \) processors), time complexity is \(O(N/P + \log N) \)
 - Compare to \(O(N) \) for sequential reduction
 - In a thread block, \(N=P \), so \(O(\log N) \)
What About Cost?

Cost of a parallel algorithm is processors × time complexity
- Allocate threads instead of processors: $O(N)$ threads
- Time complexity is $O(\log N)$, so cost is $O(N \log N)$: not cost efficient!

Brent’s theorem suggests $O(N/\log N)$ threads
- Each thread does $O(\log N)$ sequential work
- Then all $O(N/\log N)$ threads cooperate for $O(\log N)$ steps
- Cost = $O((N/\log N) \times \log N) = O(N) \rightarrow$ cost efficient

Sometimes called *algorithm cascading*
- Can lead to significant speedups in practice
Algorithm Cascading

Combine sequential and parallel reduction
- Each thread loads and sums multiple elements into shared memory
- Tree-based reduction in shared memory

Brent’s theorem says each thread should sum $O(\log n)$ elements
- i.e. 1024 or 2048 elements per block vs. 256

In my experience, beneficial to push it even further
- Possibly better latency hiding with more work per thread
- More threads per block reduces levels in tree of recursive kernel invocations
- High kernel launch overhead in last levels with few blocks

On G80, best perf with 64-256 blocks of 128 threads
- 1024-4096 elements per thread
Replace load and add of two elements:

```c
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
```

With a while loop to add as many as necessary:

```c
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;

while (i < n) {
    sdata[tid] += g_idata[i] + g_idata[i+blockSize];
    i += gridSize;
}
__syncthreads();
```
Replace load and add of two elements:

```c
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
```

With a while loop to add as many as necessary:

```c
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;
while (i < n) {
    sdata[tid] += g_idata[i] + g_idata[i+blockSize];
    i += gridSize;
}
__syncthreads();
```

Note: gridSize loop stride to maintain coalescing!
Performance for 4M element reduction

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Time ((2^{22}) ints)</th>
<th>Bandwidth</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel 1:</td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interleaved addressing with divergent branching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 2:</td>
<td>3.456 ms</td>
<td>4.854 GB/s</td>
<td>2.33x</td>
<td>2.33x</td>
</tr>
<tr>
<td>interleaved addressing with bank conflicts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 3:</td>
<td>1.722 ms</td>
<td>9.741 GB/s</td>
<td>2.01x</td>
<td>4.68x</td>
</tr>
<tr>
<td>sequential addressing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 4:</td>
<td>0.965 ms</td>
<td>17.377 GB/s</td>
<td>1.78x</td>
<td>8.34x</td>
</tr>
<tr>
<td>first add during global load</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 5:</td>
<td>0.536 ms</td>
<td>31.289 GB/s</td>
<td>1.8x</td>
<td>15.01x</td>
</tr>
<tr>
<td>unroll last warp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 6:</td>
<td>0.381 ms</td>
<td>43.996 GB/s</td>
<td>1.41x</td>
<td>21.16x</td>
</tr>
<tr>
<td>completely unrolled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 7:</td>
<td>0.268 ms</td>
<td>62.671 GB/s</td>
<td>1.42x</td>
<td>30.04x</td>
</tr>
<tr>
<td>multiple elements per thread</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kernel 7 on 32M elements: 73 GB/s!
template <unsigned int blockSize>
__device__ void warpReduce(volatile int *sdata, unsigned int tid) {
 if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
 if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
 if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
 if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
 if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
 if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}

template <unsigned int blockSize>
__global__ void reduce6(int *g_idata, int *g_odata, unsigned int n) {
 extern __shared__ int sdata[];
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*(blockSize*2) + tid;
 unsigned int gridSize = blockSize*2*gridDim.x;
 sdata[tid] = 0;

 while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; } __syncthreads();

 if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); } if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); } if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); }

 if (tid < 32) warpReduce(sdata, tid);
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
Performance Comparison

1: Interleaved Addressing: Divergent Branches
2: Interleaved Addressing: Bank Conflicts
3: Sequential Addressing
4: First add during global load
5: Unroll last warp
6: Completely unroll
7: Multiple elements per thread (max 64 blocks)
Types of optimization

Interesting observation:

Algorithmic optimizations
- Changes to addressing, algorithm cascading
 - 11.84x speedup, combined!

Code optimizations
- Loop unrolling
 - 2.54x speedup, combined
Conclusion

Understand CUDA performance characteristics
- Memory coalescing
- Divergent branching
- Bank conflicts
- Latency hiding

Use peak performance metrics to guide optimization

Understand parallel algorithm complexity theory

Know how to identify type of bottleneck
- e.g. memory, core computation, or instruction overhead

Optimize your algorithm, then unroll loops

Use template parameters to generate optimal code

Questions: mharris@nvidia.com